Ошибка средней арифметической статистика

Среднее арифметическое, как известно, используется для получения обобщающей характеристики некоторого набора данных. Если данные более-менее однородны и в них нет аномальных наблюдений (выбросов), то среднее хорошо обобщает данные, сведя к минимуму влияние случайных факторов (они взаимопогашаются при сложении).

Когда анализируемые данные представляют собой выборку (которая состоит из случайных значений), то среднее арифметическое часто (но не всегда) выступает в роли приближенной оценки математического ожидания. Почему приближенной? Потому что среднее арифметическое – это величина, которая зависит от набора случайных чисел, и, следовательно, сама является случайной величиной. При повторных экспериментах (даже в одних и тех же условиях) средние будут отличаться друг от друга.

Для того, чтобы на основе статистического анализа данных делать корректные выводы, необходимо оценить возможный разброс полученного результата. Для этого рассчитываются различные показатели вариации. Но то исходные данные. И как мы только что установили, среднее арифметическое также обладает разбросом, который необходимо оценить и учитывать в дальнейшем (в выводах, в выборе метода анализа и т.д.).

Интуитивно понятно, что разброс средней должен быть как-то связан с разбросом исходных данных. Основной характеристикой разброса средней выступает та же дисперсия.

Дисперсия выборочных данных – это средний квадрат отклонения от средней, и рассчитать ее по исходным данным не составляет труда, например, в Excel предусмотрены специальные функции. Однако, как же рассчитать дисперсию средней, если в распоряжении есть только одна выборка и одно среднее арифметическое?

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

формула средней арифметической

где xi – значения переменной,
n – количество значений.

Теперь учтем два свойства дисперсии, согласно которым, 1) — постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат и 2) — дисперсия суммы независимых случайных величин равняется сумме соответствующих дисперсий. Предполагается, что каждое случайное значение xi обладает одинаковым разбросом, поэтому несложно вывести формулу дисперсии средней арифметической:

Формула дисперсии средней арифметической

Используя более привычные обозначения, формулу записывают как:

Дисперсия средней арифметической

где σ2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Дисперсия средней арифметической по выборке

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Стандартная ошибка средней

Формула стандартной ошибки средней при использовании выборочной дисперсии

Стандартная ошибка средней по выборке

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Стандартная ошибка выборочной средней

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Зависимость стандартной ошибки средней от объем выборки

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Распределение исходных данных и средней

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Поделиться в социальных сетях:

Условное
обозначение средней арифметической
величины через М (от латинского слова
Media) чаще применяется в медицинских и
педагогических исследованиях. В
математической статистике предпочитают
обозначение через .
Средняя арифметическая величина является
производной, обобщающей количественные
признаки ряда однородных показателей
(совокупности). Выражая одним числом
определенную совокупность, она как бы
ослабляет влияние случайных индивидуальных
отклонений, и акцентирует некую обобщенную
количественную характеристику, наиболее
типичное свойство изучаемого ряда
показателей.

Определяя
значение средней арифметической
величины, следует придерживаться
некоторых правил.

1.  
Средняя арифметическая величина может
характеризовать только те признаки
изучаемого объекта, которые присущи
всей совокупности, но в разной
количественной мере (например, уровень
развития быстроты движений характерен
для каждого человека, хотя и в разной
количественной мере). Средняя арифметическая
величина не может характеризовать
количественную меру тех признаков,
которые одной части совокупности
присущи, а другой нет, т. е. она не может
отражать присутствие или отсутствие
того или иного признака (например, умение
или неумение выполнять то или иное
двигательное действие).

2.  
Средняя арифметическая величина должна
включать все показатели, полученные в
данном исследовании. Произвольное
исключение даже некоторых из них
неизбежно приведет к искажению конечного
результата.

3.  
Средняя арифметическая величина обязана
отражать только однородную совокупность.
Нельзя, например, определять средний
уровень физического развития школьников,
не разделив их предварительно по возрасту
и полу.

4.  
Средняя арифметическая величина должна
вычисляться на достаточно большой
совокупности, размеры которой определяются
в каждом конкретном случае отдельно
(см. «Подбор исследуемых»).

5.  
Необходимо стремиться к тому, чтобы
средняя арифметическая величина имела
четкие и простые свойства, позволяющие
легко и быстро ее вычислять.

6.  
Средняя арифметическая величина должна
обладать достаточной устойчивостью к
действию случайных факторов. Только в
этом случае она будет отражать
действительное состояние изучаемого
явления, а не его случайные изменения.

7.  
Точность вычисления средней арифметической
величины должна соответствовать
содержанию изучаемого педагогического
явления. В некоторых случаях нет
необходимости в расчетах с большой
точностью, в других — большая точность
нужна при вычислениях, но совершенно
не нужна в выводах. Например, при расчете
средних величин числа подтягиваний на
перекладине можно пользоваться и сотыми
долями целого, но представлять и выводах,
что исследуемые в среднем подтянулись
7,83 раза, было бы неграмотна, так как
невозможно измерение с подобной
точностью. В этом случае необходимо в
выводах представлять числа, округленные
до целых единиц.

В
простейшем случае этот показатель
вычисляется путем сложения всех
полученных значений (которые называются
вариантами) и деления суммы на число
вариант:

где
   S — знак суммирования;

V
— полученные в исследовании значения
(варианты);

п
— число вариант.

По
этой формуле вычисляется так называемая
простая средняя арифметическая величина.
Применяется она в тех случаях, когда
имеется небольшое число вариант.

При
большом числе вариант прибегают к
вычислению так называемой взвешенной
средней арифметической величины. С этой
целью строят ряд распределения, или
вариационный ряд, который представляет
собой ряд вариант и их частот,
характеризующих какой-нибудь признак
в убывающем или возрастающем порядке.
Например, в нашем случае измерение
точности попадания мячом в цель дало
125 вариант, т. е. в группе I, где применялась
методика обучения «А», одноразово
исследовалось 125 детей с числовым
выражением от 0 (точное попадание в цель)
до 21,5 см (максимальное отклонение от
цели). Каждое числовое выражение
встречалось в исследовании один и более
раз, например «0» встретился 28 раз.
Другими словами, 28 участников эксперимента
точно попали в цель. Этот показатель
называется числом наблюдений или
частотой вариант и условно обозначается
буквой «Р» (число наблюдений составляет
часть числа вариант).

Для
упрощения числовых операций все 125
вариант разбиваются на классы с величиной
интервала 1,9 см. Число классов зависит
от величины колебаний вариант (разности
между максимальной и минимальной
вариантами), наличия вариант для каждого
класса (если, например, для первого
класса — «0 — 1,9» — нет соответствующих
вариант, т.е. ни один исследуемый не имел
точных попаданий или отклонений от цели
в пределах от 0 до 1,9 см, то подобный класс
не вносится в вариационный ряд) и,
наконец, требуемой точности вычисления,
(чем больше классов, тем точность
вычисления выше). Вполне понятно, что
чем больше величина интервала, тем
меньше число классов при одной и той же
величине колебаний вариант.

После
разбивки вариант по классам в каждом
классе определяется срединная варианта
«Vc»,
и для каждой срединной варианты
проставляется число наблюдений. Пример
этих операций, и дальнейший ход вычислений
приведены в следующей таблице:

Классы

Серединные
варианты VC

Число
набл, р

VCP

VC-M=d

d2

d2P

0
– 1.9

1

28

28

-4.6

21.16

592.48

2
– 3.9

3

29

87

-2.6

6.76

196.04

4
– 5.9

5

22

110

-0.6

0.36

7.92

6
– 7.9

7

13

91

1.4

1.96

25.48

8
– 9.9

9

11

99

3.4

11.56

127.16

10
– 11.9

11

13

143

5.4

29.16

379.08

12
– 13.9

13

4

52

7.4

54.76

219.04

14
– 15.9

15

2

30

9.4

88.36

176.72

16
– 17.9

17

1

17

11.4

130.00

130.00

18
– 19.9

19

1

19

13.4

179.60

179.60

20
– 21.9

21

1

21

15.4

237.20

237.20

125

697

2270.72

Очередность
числовых операций:

1)  
вычислить сумму числа наблюдений (в
нашем примере она равна 125);

2)  
вычислить произведение каждой срединной
варианты на ее частоту (например, 1*28 =
28);

3)  
вычислить сумму произведений срединных
вариант на их частоты (в нашем примере
она равна 697);

4)  
вычислить взвешенную среднюю арифметическую
величину по формуле:

Средняя
арифметическая величина позволяет
сравнивать и оценивать группы изучаемых
явлений в целом. Однако для характеристики
группы явлений только этой величины
явно недостаточно, так как размер
колебаний вариант, из которых она
складывается, может быть различным.
Поэтому в характеристику группы явлений
необходимо ввести такой показатель,
который давал бы представление о величине
колебаний вариант около их средней
величины.

Вычисление
средней ошибки среднего арифметического
.
Условное обозначение средней ошибки
среднего арифметического — т. Следует
помнить, что под «ошибкой» в статистике
понимается не ошибка исследования, а
мера представительства данной величины,
т. е. мера, которой средняя арифметическая
величина, полученная на выборочной
совокупности (в нашем примере — на 125
детях), отличается от истинной средней
арифметической величины, которая была
бы получена на генеральной совокупности
(в нашем примере это были бы все дети
аналогичного возраста, уровня
подготовленности и т. д.). Например, в
приведенном ранее примере определялась
точность попадания малым мячом в цель
у 125 детей и была получена средняя
арифметическая величина примерно равная
5,6 см. Теперь надо установить, в какой
мере эта величина будет характерна,
если взять для исследования 200, 300, 500 и
больше аналогичных детей. Ответ на этот
вопрос и даст вычисление средней ошибки
среднего арифметического, которое
производится по формуле:

Для
приведенного примера величина средней
ошибки среднего арифметического будет
равна:

Следовательно,
M±m = 5,6±0,38. Это означает, что полученная
средняя арифметическая величина (M =
5,6) может иметь в других аналогичных
исследованиях значения от 5,22 (5,6 — 0,38 =
5,22) до 5,98 (5,6+0,38 = 5,98).

Соседние файлы в предмете Ветеринарная генетика

  • #
  • #
  • #

Среднее арифметическое — один из самых распространенных статистических показателей. Но насколько точно оно отражает реальность? Давайте разберемся!

Что такое среднее арифметическое и зачем оно нужно

Среднее арифметическое — это сумма всех значений, деленная на их количество:

Среднее арифметическое = (Х1 + Х2 + ... + Хн) / n

Например, для чисел 2, 3, 7, 8 среднее арифметическое будет равно (2 + 3 + 7 + 8) / 4 = 5.

Среднее арифметическое позволяет получить обобщенную характеристику выборки данных. Благодаря тому, что все значения учитываются одинаково, среднее независимо от отдельных «выбросов». Поэтому среднее арифметическое часто используется в статистике, экономике, социологии и других областях.

Однако у среднего арифметического есть и недостатки. Оно чувствительно к экстремальным значениям в выборке. Например, если в ряду 1, 2, 3, 4 добавить число 10000, среднее резко вырастет. Поэтому иногда среднее может искажать реальную картину.

Понятие ошибки среднего арифметического

Любая выборка данных содержит случайную ошибку. Это приводит к тому, что среднее арифметическое также является приближенной оценкой истинного значения.

Ошибки среднего арифметического бывают:

  • Систематические — связаны с методикой расчета
  • Случайные — обусловлены выборкой данных

Даже небольшая ошибка среднего может привести к неверной интерпретации результатов. Например, если средний рост в выборке составил 170 см, а ошибка — 5 см, то на самом деле средний рост может быть в диапазоне от 165 до 175 см. Это существенно меняет выводы.

Поэтому очень важно количественно оценить точность среднего арифметического. Рассмотрим основные способы это сделать.

Вид города в золотой час

Стандартная ошибка среднего арифметического

Стандартная ошибка показывает величину случайных отклонений среднего арифметического от истинного значения. Она вычисляется по формуле:

Стандартная ошибка = σ / √n

где σ — стандартное отклонение исходных данных, а n — объем выборки.

Например, для выборки из 100 значений со стандартным отклонением 20 стандартная ошибка среднего составит 20 / √100 = 2.

Чем меньше стандартная ошибка, тем точнее среднее арифметическое. Если стандартная ошибка велика относительно самого среднего, значит, ему нельзя полностью доверять.

Доверительный интервал среднего арифметического

Доверительный интервал — это диапазон значений, в который с заданной вероятностью попадает истинное значение среднего.

Доверительный интервал рассчитывается по формуле:

ДИ = среднее ± t * стандартная ошибка

где t — коэффициент доверия, зависящий от объема выборки и желаемого уровня значимости.

Чем шире доверительный интервал, тем менее точно среднее арифметическое. Увеличивая объем выборки, можно сузить доверительный интервал и повысить точность оценки среднего.

Например, для выборки объемом 50 среднее 170 и стандартная ошибка 5 доверительный интервал при уровне значимости 0.95 составит 170 ± 2*5 = 160 — 180.

Таким образом, истинное среднее значение с 95% вероятностью находится между 160 и 180. Это дает представление о точности оценки среднего по выборке.

Другие способы оценки точности среднего арифметического

Помимо стандартной ошибки и доверительного интервала, существуют и другие способы оценки точности среднего арифметического:

  • Среднеквадратичное отклонение среднего
  • Медианное отклонение от среднего
  • Размах вариации среднего

Эти показатели также дают представление о величине случайной ошибки среднего арифметического. Их применение позволяет оценить точность среднего с разных сторон.

Например, большой размах вариации среднего арифметического по разным выборкам говорит о низкой устойчивости этого показателя и следовательно о его низкой точности.

Таким образом, используя комплекс показателей, можно получить наиболее полную картину того, насколько среднее арифметическое отражает реальное значение.

Факторы, влияющие на точность среднего арифметического

На точность среднего арифметического влияют:

  • Объем выборки — чем больше данных, тем выше точность
  • Наличие выбросов — сильно искажают среднее
  • Тип распределения — для нормального распределения среднее наиболее точно

Для повышения точности среднего арифметического рекомендуется:

  1. Увеличивать объем выборки
  2. Исключать выбросы
  3. Преобразовывать распределение к нормальному виду

Также полезно рассчитывать доверительный интервал и другие показатели ошибки среднего.

Например, исключение выбросов может существенно сузить доверительный интервал среднего и сделать его значение более точным.

Портрет ученого

Как правильно интерпретировать среднее арифметическое

При использовании среднего арифметического важно правильно интерпретировать полученные результаты:

  • Учитывать величину ошибки среднего
  • Сравнивать средние разных выборок с осторожностью
  • Опираться на доверительные интервалы

Некорректная интерпретация среднего может привести к ошибочным выводам.

Например, сравнение средних двух выборок без учета ошибок и перекрытия доверительных интервалов не дает оснований утверждать, что эти средние достоверно различаются.

Только комплексный анализ среднего арифметического с оценкой его точности позволяет сделать обоснованные выводы.

Сферы применения среднего арифметического

Среднее арифметическое широко используется в различных областях:

  • Естественные науки — физика, химия, биология
  • Экономика и финансы — показатели роста, доходности и др.
  • Социология и психология — оценка удовлетворенности, IQ и т.п.
  • Медицина — анализ результатов исследований, статистика
  • Спорт — средние показатели результатов

Во всех этих областях учет ошибки и точности среднего арифметического крайне важен для получения обоснованных результатов.

Программные средства для расчета среднего и его ошибки

Для расчета среднего арифметического и его ошибки используются:

  • Функции в Excel: СРЗНАЧ, СТАНДОТКЛОН
  • Статистические пакеты: R, SPSS, Стата
  • Онлайн-калькуляторы
  • Библиотеки Python, Java и других языков программирования

Эти инструменты позволяют быстро производить расчеты для любых данных и выборок.

Например, в Excel можно легко получить среднее и стандартную ошибку по выборке, а затем рассчитать доверительный интервал.

Использование программных средств избавляет от рутинных ручных расчетов и позволяет эффективно оценивать точность среднего арифметического.

Пример расчета доверительного интервала для среднего арифметического

Рассмотрим конкретный пример расчета доверительного интервала среднего арифметического.

Пусть имеется выборка из 25 значений, среднее арифметическое в ней равно 150, а стандартное отклонение — 10. Необходимо построить 95% доверительный интервал для среднего.

Сначала вычислим стандартную ошибку среднего:

Стандартная ошибка = 10 / √25 = 2

Для 95% доверительного интервала коэффициент Стьюдента t при числе степеней свободы 24 равен 2,064.

Подставляем значения в формулу и получаем:

ДИ = 150 ± 2,064 * 2 = 150 ± 4,1

Таким образом, с вероятностью 95% истинное среднее значение находится в интервале от 145,9 до 154,1.

Сравнение средних арифметических двух выборок

Часто возникает необходимость сравнить средние арифметические двух выборок и понять, достоверно ли они различаются.

Для этого можно использовать t-критерий Стьюдента. Сначала проверяется равенство дисперсий в выборках, а затем рассчитывается статистика критерия и сравнивается с критическим значением.

Если доверительные интервалы двух средних перекрываются, то различия между ними статистически незначимы. И наоборот, непересечение ДИ означает значимое различие средних.

Методы снижения ошибки среднего арифметического

Для уменьшения ошибки среднего арифметического можно использовать разные методы:

  • Увеличение объема выборки
  • Исключение выбросов и экстремальных значений
  • Взвешивание данных
  • Вычисление среднего по группам

Например, разбиение данных на однородные группы и расчет среднего в каждой группе, а затем общего среднего, позволяет уменьшить ошибку за счет устранения внутригрупповых различий.

Альтернативы среднему арифметическому

В случаях, когда среднее арифметическое дает существенную ошибку, можно использовать другие статистики:

  • Медиана — устойчива к выбросам
  • Мода — часто встречающееся значение
  • Среднее геометрическое, среднее гармоническое
  • Среднее триммед, среднее усеченное — исключают выбросы

Эти статистики также имеют свои ошибки. Но в ряде случаев они могут дать более точную оценку, чем среднее арифметическое.

Вычисление ошибки среднего в Python

В языке Python можно легко вычислить ошибку среднего арифметического с помощью библиотеки statistics.

Функция mean() возвращает среднее, а sterr() — стандартную ошибку среднего для заданного набора данных.

Например:

 from statistics import mean, sterr data = [1.5, 2.8, 4.6, 8.9, 10.3] avg = mean(data) error = sterr(data) print(avg) # 5.62 print(error) # 1.98 

Таким образом, в Python можно легко и быстро получить численную оценку ошибки среднего арифметического для статистического анализа данных.

Standard Error is the measure of the variability of a sample statistic used to estimate the variability of a population. Standard Error is important in dealing with sample statistics, such as sample mean, sample proportion, etc. Sample Error Formula is used to determine the accuracy of a sample that reflects a population. The standard error formula is the discrepancy between the sample mean and the population mean.

In this article, we will learn about, Standard Error, Standard Error Formula, Standard Error of Mean, Standard Error of Estimate, related Examples, and Error in detail.

What is Standard Error?

The term “sample” in statistics refers to a specific set of information that is generated. The data we obtained on the height of some people in a locality, for example, maybe the sample. A population is a collection of people from which we draw a sample. There are several ways to define a population, and we must always be clear about what constitutes a population. This collection necessitates a large number of calculations.

Standard error represents how well a given sample represents the population. The Standard Error indicates how well the sample mean predicts the real population mean.

Standard Error(SE) Formula

The SE formula is used to determine the reliability of a sampling that represents a population. The sample mean that differs from the provided population and is expressed as:

SE = S/√(n)

where,

  • S is Standard Deviation of Data
  • n is Number of Observations

Standard Error of Mean (SEM)

Standard Error of Mean(SEM) is also known by the name Standard Deviation of Mean, is the standard deviation of the measure of sample mean of the population. Standard Error is used when we have to find the population mean from the sample of data and we take two samples to get two different mean in that case we use Standard Error Mean.

Standard Error Mean formula is the ratio of standard deviation to the root of sample size,

SEM = S/√(n)

where,

  • S is Standard Deviation
  • n is Number of Observations

Standard Error of Estimate (SEE)

Standard Error Estimate is use to find the accuracy of prediction of any event. Its abbreviation is SEE. Standard Error Estimate (SEE) is also called the Sum of Sqaures Error. SEE is the square root of average squared deviation.

Standard Error of Estimate(SEE) formula is discussed below,

SEE = √[Σ(xi – μ)/(n – 2)]

where,

  • xi is values of Data
  • μ is Mean Value of Data
  • n is Sample Size

How to Calculate Standard Error?

Various steps to calculate the standard error are added below,

Step 1: Find the number of measurement(n) and find the sample mean(μ).

Step 2: Find the variation of sample values from the mean value.

Step 3: Find the square of the deviation and find their sum. Σ(xi – μ)²

Step 4: Divide the sum from step 3 by (n-1).

Step 5: Take the square root of the number, i.e. standard deviation (σ).

Step 6: Divide the standard deviation by the square root of measurement(n).

Read More,

  • Standard Deviation Formula
  • Mode
  • Mean Deviation
  • Statistics Formulas

Standard Error Solved Examples

Example 1: Find the standard error for the sample data: 1, 2, 3, 4, 5.

Solution:

Mean of Given Data = (1+2+3+4+5)/5

μ = 15/5

μ = 3

Standard Deviation = √((1 – 3)2 + (2 – 3)2 + (3 – 3)2 + (4 – 3)2 + (5 – 3)2)/(5 – 1)

σ = √((4 + 1 + 0 + 1 + 4)/4)

σ = √(10/4)

σ = 1.5

SE = 1.5/√5

SE = 0.67

Example 2: Find the standard error for the sample data: 2, 3, 4, 5, 6.

Solution:

Mean of Given Data = (2+3+4+5+6)/5

μ = 20/5

μ = 4

Standard Deviation(σ) = √((2 – 4)2 + (3 – 4)2 + (4 – 4)2 + (5 – 4)2 + (6 – 4)2)/(5 – 1)

σ = √((4 + 1 + 0 + 1 + 4)/4)

σ = √(10/4)

σ = 1.58

SE = 1.58/√5

SE = 0.706

Example 3: Find the standard error for the sample data: 10, 20, 30, 40, 45.

Solution:

Mean of the given data = (10+20+30+40+45)/5

μ = 145/5

μ = 29

Standard Deviation(σ) = √((10 – 29)2 + (20 – 29)2 + (30 – 29)2 + (40 – 29)2 + (45 – 29)2)/(5 – 1)

σ = √(820/4)

σ = 14.317

SE = 14.317/√6

SE = 5.84

Example 4: Find the standard error for the sample data: 2, 6, 9, 5.

Solution:

Mean of Given Data = (2+6+9+5)/4

μ = 5.5

Standard Deviation = √((2 – 5.5)2 + (6 – 5.5)2 + (9 – 5.5)2 + (5 – 5.5)2)/(4 – 1)

σ = √(25/3)

σ = 2.88

SE = 2.8/√5.5

SE = 1.19

Example 5: Find the standard error for the sample data: 5, 8, 10, 12.

Solution:

Mean of Given Data(μ) = (5+8+10+12)/4

μ = 8.75

Standard Deviation = √((5 – 8.75)2 + (8 – 8.75)2 + (10 – 8.75)2 + (12 – 8.75)2)/(4 – 1)

σ = √(26.75/3)

σ = 2.98

SE = 2.98/√8.75

SE = 1.0074

FAQs on Standard Error

1. What is Standard Error?

Standard error is the mathematical concept that is used to find the estimate value of variability in the given set of data. It is written as SE

2. What is Standard Error Formula?

Standard Error Formula is,

SE = S/√(n)

where,

  • S is Standard Deviation of Data
  • n is Number of Observations

3. Why do we calculate Standard Error?

We calculate standard error to find out the accuracy of a sample mean as compared to the population mean.

4. What is the difference between SD and SE?

SD i.e. standard deviation measures the variability within a sample while SE i.e. Standard Error measures the variability across the different samples of a population.

Last Updated :
29 Aug, 2023

Like Article

Save Article

Share your thoughts in the comments

Please Login to comment…

Содержание:

  • Расчет ошибки средней арифметической
    • Способ 1: расчет с помощью комбинации функций
    • Способ 2: применение инструмента «Описательная статистика»
  • Вопросы и ответы: 14

Стандартная ошибка или, как часто называют, ошибка средней арифметической, является одним из важных статистических показателей. С помощью данного показателя можно определить неоднородность выборки. Он также довольно важен при прогнозировании. Давайте узнаем, какими способами можно рассчитать величину стандартной ошибки с помощью инструментов Microsoft Excel.

Расчет ошибки средней арифметической

Одним из показателей, которые характеризуют цельность и однородность выборки, является стандартная ошибка. Эта величина представляет собой корень квадратный из дисперсии. Сама дисперсия является средним квадратном от средней арифметической. Средняя арифметическая вычисляется делением суммарной величины объектов выборки на их общее количество.

В Экселе существуют два способа вычисления стандартной ошибки: используя набор функций и при помощи инструментов Пакета анализа. Давайте подробно рассмотрим каждый из этих вариантов.

Способ 1: расчет с помощью комбинации функций

Прежде всего, давайте составим алгоритм действий на конкретном примере по расчету ошибки средней арифметической, используя для этих целей комбинацию функций. Для выполнения задачи нам понадобятся операторы СТАНДОТКЛОН.В, КОРЕНЬ и СЧЁТ.

Для примера нами будет использована выборка из двенадцати чисел, представленных в таблице.

Выборка в Microsoft Excel

  1. Выделяем ячейку, в которой будет выводиться итоговое значение стандартной ошибки, и клацаем по иконке «Вставить функцию».
  2. Переход в Мастер функций в Microsoft Excel

  3. Открывается Мастер функций. Производим перемещение в блок «Статистические». В представленном перечне наименований выбираем название «СТАНДОТКЛОН.В».
  4. Переход в окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  5. Запускается окно аргументов вышеуказанного оператора. СТАНДОТКЛОН.В предназначен для оценивания стандартного отклонения при выборке. Данный оператор имеет следующий синтаксис:

    =СТАНДОТКЛОН.В(число1;число2;…)

    «Число1» и последующие аргументы являются числовыми значениями или ссылками на ячейки и диапазоны листа, в которых они расположены. Всего может насчитываться до 255 аргументов этого типа. Обязательным является только первый аргумент.

    Итак, устанавливаем курсор в поле «Число1». Далее, обязательно произведя зажим левой кнопки мыши, выделяем курсором весь диапазон выборки на листе. Координаты данного массива тут же отображаются в поле окна. После этого клацаем по кнопке «OK».

  6. Окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  7. В ячейку на листе выводится результат расчета оператора СТАНДОТКЛОН.В. Но это ещё не ошибка средней арифметической. Для того, чтобы получить искомое значение, нужно стандартное отклонение разделить на квадратный корень от количества элементов выборки. Для того, чтобы продолжить вычисления, выделяем ячейку, содержащую функцию СТАНДОТКЛОН.В. После этого устанавливаем курсор в строку формул и дописываем после уже существующего выражения знак деления (/). Вслед за этим клацаем по пиктограмме перевернутого вниз углом треугольника, которая располагается слева от строки формул. Открывается список недавно использованных функций. Если вы в нем найдете наименование оператора «КОРЕНЬ», то переходите по данному наименованию. В обратном случае жмите по пункту «Другие функции…».
  8. Переход к дальнейшему продолжению написания формулы стандартной ошибки в Microsoft Excel

  9. Снова происходит запуск Мастера функций. На этот раз нам следует посетить категорию «Математические». В представленном перечне выделяем название «КОРЕНЬ» и жмем на кнопку «OK».
  10. Переход в окно аргументов функции КОРЕНЬ в Microsoft Excel

  11. Открывается окно аргументов функции КОРЕНЬ. Единственной задачей данного оператора является вычисление квадратного корня из заданного числа. Его синтаксис предельно простой:

    =КОРЕНЬ(число)

    Как видим, функция имеет всего один аргумент «Число». Он может быть представлен числовым значением, ссылкой на ячейку, в которой оно содержится или другой функцией, вычисляющей это число. Последний вариант как раз и будет представлен в нашем примере.

    Устанавливаем курсор в поле «Число» и кликаем по знакомому нам треугольнику, который вызывает список последних использованных функций. Ищем в нем наименование «СЧЁТ». Если находим, то кликаем по нему. В обратном случае, опять же, переходим по наименованию «Другие функции…».

  12. Окно аргументов функции КОРЕНЬ в Microsoft Excel

  13. В раскрывшемся окне Мастера функций производим перемещение в группу «Статистические». Там выделяем наименование «СЧЁТ» и выполняем клик по кнопке «OK».
  14. Переход в окно аргументов функции СЧЁТ в Microsoft Excel

  15. Запускается окно аргументов функции СЧЁТ. Указанный оператор предназначен для вычисления количества ячеек, которые заполнены числовыми значениями. В нашем случае он будет подсчитывать количество элементов выборки и сообщать результат «материнскому» оператору КОРЕНЬ. Синтаксис функции следующий:

    =СЧЁТ(значение1;значение2;…)

    В качестве аргументов «Значение», которых может насчитываться до 255 штук, выступают ссылки на диапазоны ячеек. Ставим курсор в поле «Значение1», зажимаем левую кнопку мыши и выделяем весь диапазон выборки. После того, как его координаты отобразились в поле, жмем на кнопку «OK».

  16. Окно аргументов функции СЧЁТ в Microsoft Excel

  17. После выполнения последнего действия будет не только рассчитано количество ячеек заполненных числами, но и вычислена ошибка средней арифметической, так как это был последний штрих в работе над данной формулой. Величина стандартной ошибки выведена в ту ячейку, где размещена сложная формула, общий вид которой в нашем случае следующий:

    =СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13))

    Результат вычисления ошибки средней арифметической составил 0,505793. Запомним это число и сравним с тем, которое получим при решении поставленной задачи следующим способом.

Результат вычисления стандартной ошибки в сложной формуле в Microsoft Excel

Но дело в том, что для малых выборок (до 30 единиц) для большей точности лучше применять немного измененную формулу. В ней величина стандартного отклонения делится не на квадратный корень от количества элементов выборки, а на квадратный корень от количества элементов выборки минус один. Таким образом, с учетом нюансов малой выборки наша формула приобретет следующий вид:

=СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13)-1)

Результат вычисления стандартной ошибки для малой выборки в Microsoft Excel

Урок: Статистические функции в Экселе

Способ 2: применение инструмента «Описательная статистика»

Вторым вариантом, с помощью которого можно вычислить стандартную ошибку в Экселе, является применение инструмента «Описательная статистика», входящего в набор инструментов «Анализ данных» («Пакет анализа»). «Описательная статистика» проводит комплексный анализ выборки по различным критериям. Одним из них как раз и является нахождение ошибки средней арифметической.

Но чтобы воспользоваться данной возможностью, нужно сразу активировать «Пакет анализа», так как по умолчанию в Экселе он отключен.

  1. После того, как открыт документ с выборкой, переходим во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Далее, воспользовавшись левым вертикальным меню, перемещаемся через его пункт в раздел «Параметры».
  4. Перемещение в раздел Параметры в Microsoft Excel

  5. Запускается окно параметров Эксель. В левой части данного окна размещено меню, через которое перемещаемся в подраздел «Надстройки».
  6. Переход в подраздел надстройки окна параметров в Microsoft Excel

  7. В самой нижней части появившегося окна расположено поле «Управление». Выставляем в нем параметр «Надстройки Excel» и жмем на кнопку «Перейти…» справа от него.
  8. Переход в окно надстроек в Microsoft Excel

  9. Запускается окно надстроек с перечнем доступных скриптов. Отмечаем галочкой наименование «Пакет анализа» и щелкаем по кнопке «OK» в правой части окошка.
  10. Включение пакета анализа в окне надстроек в Microsoft Excel

  11. После выполнения последнего действия на ленте появится новая группа инструментов, которая имеет наименование «Анализ». Чтобы перейти к ней, щелкаем по названию вкладки «Данные».
  12. Переход во вкладку Данные в Microsoft Excel

  13. После перехода жмем на кнопку «Анализ данных» в блоке инструментов «Анализ», который расположен в самом конце ленты.
  14. Переход в Анализ данных в Microsoft Excel

  15. Запускается окошко выбора инструмента анализа. Выделяем наименование «Описательная статистика» и жмем на кнопку «OK» справа.
  16. Переход в описательную статистику в Microsoft Excel

  17. Запускается окно настроек инструмента комплексного статистического анализа «Описательная статистика».

    В поле «Входной интервал» необходимо указать диапазон ячеек таблицы, в которых находится анализируемая выборка. Вручную это делать неудобно, хотя и можно, поэтому ставим курсор в указанное поле и при зажатой левой кнопке мыши выделяем соответствующий массив данных на листе. Его координаты тут же отобразятся в поле окна.

    В блоке «Группирование» оставляем настройки по умолчанию. То есть, переключатель должен стоять около пункта «По столбцам». Если это не так, то его следует переставить.

    Галочку «Метки в первой строке» можно не устанавливать. Для решения нашего вопроса это не важно.

    Далее переходим к блоку настроек «Параметры вывода». Здесь следует указать, куда именно будет выводиться результат расчета инструмента «Описательная статистика»:

    • На новый лист;
    • В новую книгу (другой файл);
    • В указанный диапазон текущего листа.

    Давайте выберем последний из этих вариантов. Для этого переставляем переключатель в позицию «Выходной интервал» и устанавливаем курсор в поле напротив данного параметра. После этого клацаем на листе по ячейке, которая станет верхним левым элементом массива вывода данных. Её координаты должны отобразиться в поле, в котором мы до этого устанавливали курсор.

    Далее следует блок настроек определяющий, какие именно данные нужно вводить:

    • Итоговая статистика;
    • К-ый наибольший;
    • К-ый наименьший;
    • Уровень надежности.

    Для определения стандартной ошибки обязательно нужно установить галочку около параметра «Итоговая статистика». Напротив остальных пунктов выставляем галочки на свое усмотрение. На решение нашей основной задачи это никак не повлияет.

    После того, как все настройки в окне «Описательная статистика» установлены, щелкаем по кнопке «OK» в его правой части.

  18. Окно описаительная статистика в Microsoft Excel

  19. После этого инструмент «Описательная статистика» выводит результаты обработки выборки на текущий лист. Как видим, это довольно много разноплановых статистических показателей, но среди них есть и нужный нам – «Стандартная ошибка». Он равен числу 0,505793. Это в точности тот же результат, который мы достигли путем применения сложной формулы при описании предыдущего способа.

Результат расчета стандартной ошибки путем применения инструмента Описательная статистика в Microsoft Excel

Урок: Описательная статистика в Экселе

Как видим, в Экселе можно произвести расчет стандартной ошибки двумя способами: применив набор функций и воспользовавшись инструментом пакета анализа «Описательная статистика». Итоговый результат будет абсолютно одинаковый. Поэтому выбор метода зависит от удобства пользователя и поставленной конкретной задачи. Например, если ошибка средней арифметической является только одним из многих статистических показателей выборки, которые нужно рассчитать, то удобнее воспользоваться инструментом «Описательная статистика». Но если вам нужно вычислить исключительно этот показатель, то во избежание нагромождения лишних данных лучше прибегнуть к сложной формуле. В этом случае результат расчета уместится в одной ячейке листа.

Помогла ли Вам статья?

Да
Нет

Задайте вопрос или оставьте мнение

Представление результатов исследования

В научных публикациях важно представление результатов исследования. Очень часто окончательный результат приводится в следующем виде: M±m, где M – среднее арифметическое, m –ошибка среднего арифметического. Например, 163,7±0,9 см.

Прежде чем разбираться в правилах представления результатов исследования, давайте точно усвоим, что же такое ошибка среднего арифметического.

Ошибка среднего арифметического

Среднее арифметическое, вычисленное на основе выборочных данных (выборочное среднее), как правило, не совпадает с генеральным средним (средним арифметическим генеральной совокупности). Экспериментально проверить это утверждение невозможно, потому что нам неизвестно генеральное среднее. Но если из одной и той же генеральной совокупности брать повторные выборки и вычислять среднее арифметическое, то окажется, что для разных выборок среднее арифметическое будет разным.

Чтобы оценить, насколько выборочное среднее арифметическое отличается от генерального среднего, вычисляется ошибка среднего арифметического или ошибка репрезентативности.

Ошибка среднего арифметического обозначается как m или  Представление результатов исследования

Ошибка среднего арифметического рассчитывается по формуле:

Представление результатов исследования

где: S — стандартное отклонение, n – объем выборки; Например, если стандартное отклонение равно S=5 см, объем выборки n=36 человек, то ошибка среднего арифметического равна: m=5/6 = 0,833.

Ошибка среднего арифметического показывает, какая ошибка в среднем допускается, если использовать вместо генерального среднего выборочное среднее.

Так как при небольшом объеме выборки истинное значение генерального среднего не может быть определено сколь угодно точно, поэтому при вычислении выборочного среднего арифметического нет смысла оставлять большое число значащих цифр.

Правила записи результатов исследования

  1. В записи ошибки среднего арифметического оставляем две значащие цифры, если первые цифры в ошибке «1» или «2».
  2. В остальных случаях в записи ошибки среднего арифметического оставляем одну значащую цифру.
  3. В записи среднего арифметического положение последней значащей цифры должно соответствовать положению первой значащей цифры в записи ошибки среднего арифметического.

Представление результатов научных исследований

В своей статье «Осторожно, статистика!», опубликованной в 1989 году В.М. Зациорский указал, какие числовые характеристики должны быть представлены в публикации, чтобы она имела научную ценность. Он писал, что исследователь «…должен назвать: 1) среднюю величину (или другой так называемый показатель положения); 2) среднее квадратическое отклонение (или другой показатель рассеяния) и 3) число испытуемых. Без них его публикация научной ценности иметь не будет “с. 52

В научных публикациях в области физической культуры и спорта очень часто окончательный результат приводится в виде:  (М±m) (табл.1).

Таблица 1 — Изменение механических свойств латеральной широкой мышцы бедра под воздействием физической нагрузки (n=34)

Эффективный модуль

упругости (Е), кПа

Эффективный модуль

вязкости (V), Па с

Этап

эксперимента

Рассл. Напряж. Рассл. Напряж.
До ФН 7,0±0,3 17,1±1,4 29,7±1,7 46±4
После ФН 7,7±0,3 18,7±1,4 30,9±2,0 53±6

Литература

  1. Высшая математика и математическая статистика: учебное пособие для вузов / Под общ. ред. Г. И. Попова. – М. Физическая культура, 2007.– 368 с.
  2. Гласс Дж., Стэнли Дж. Статистические методы в педагогике и психологии. М.: Прогресс. 1976.- 495 с.
  3. Зациорский В.М. Осторожно — статистика! // Теория и практика физической культуры, 1989.- №2.
  4. Катранов А.Г. Компьютерная обработка данных экспериментальных исследований: Учебное пособие/ А. Г. Катранов, А. В. Самсонова; СПб ГУФК им. П.Ф. Лесгафта. – СПб.: изд-во СПб ГУФК им. П.Ф. Лесгафта, 2005. – 131 с.
  5. Основы математической статистики: Учебное пособие для ин-тов физ. культ / Под ред. В.С. Иванова.– М.: Физкультура и спорт, 1990. 176 с.

Понравилась статья? Поделить с друзьями:
  • Ошибка средней арифметической стандартная ошибка разницы показателей
  • Ошибка средней арифметической стандартная ошибка первой выборки
  • Ошибка средней арифметической обозначается буквой
  • Ошибка сработали лимиты на операции в пользу зарубежных провайдеров киви
  • Ошибка средней арифметической выборки n 30 вычисляется по формуле